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ABSTRACT

Reentry vehicle roll resonance due to small mass and aerodynamic

asymmetries is described analytically by. a quasi-steady solution 6f-the

three-degree-of-freedom moment equations of motion. The quasi-steady

analysis neglects oscillations in the vehicle orientation and angular rates

about average (quasi-steady) values of these parameters, which change

slowly with time relative to the oscillations. The study treats different

regimes of reentry Vehicle roll resonance, that have been identified through

computer solutions of the general equations of motion. These include -high

altitude roll lockinand breakout due to a single mass a3ymmetry, inter-

mediate and low altitude subresonance with a single asymmetry, ;and spinup

and lockin to low altitude resonance from a compound asymmetry. For each

of the resonance regimes, analytical expressions 'are obtained that describe

the quasi-steady vehicle motion, and the results are found to be in good

agreement with computer solutions of the equations of motion. The analytical

approximations provide a simple tool for predicting reentry vehicle dynamic

behavior without requiring costly and time consuming machine computations.
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NOMENCLATURE

c center-of-mass asymmetry

CA aerodynamic axial force coefficient

C I aerodynamic roll damping derivative
p

Cm aerodynamic pitch damping derivative
q

CNc aerodynamic normal force derivative

Ct  aerodynamic trim force coefficient

d aerodynamic reference diameter

Ft trim force

h angular momentum; altitude

H reference altitude for exponential atmosphere

I pitch or yaw moment of inertia

I roll moment-of inertiaX

static margin (distance of center of pressure aft of
center of mass)

L location of trim force aft of center of mass

m vehicle mass

M moment

p roll rate

PC critical roll rate,(- /-

q dynamic pressure

S aerodynamic reference area

t timeJ u vehicle velocity
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x,y, z body-fixed axes

X,YZ inertial axes

ballistic coefficient CAS

Spath angle

CAqSc
611 I

P, qSd2

roll damping coefficient, - p
I'U
x

roll axis

yaw axis,

8 total angle of attack

CN qSc

roll moment coefficient, a
X,

CN qSI

X pitchmoment coefficient, ..

inertia ratio, Ix /I

v pitch damping, coefficient, qSd + N ]

pitch axis

p atmospheric density

CtqSc
r trim roll moment coefficient, I

x

C tqSL ttrim pitch moment coefficient, t
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roll orientation relative to wind

precession angle

wangular velocity

Subscripts

roll

yaw

pitch

+ osciflatory component

Superscripts -

time derivative

quasi-steady component
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I. INT-RODUCTION

It has been lknown or :some time that niis siles or 'projectiles -with slight

configurational asynuetries ,can exhibit ,erratic 'roll behavior due to gyroscopic

'coupling of roll -and 'pitchmotions (roll resonance) at~or -near the natural 'pitch

frequency ,of the mis sile ,(Refs. .i -and :2). "More recently, -With the advent ,of

smaller and 'higher ballistic coefficient -reentry -vehicles, sinxilar ,erratic

'behavior has been ,observed -tat ,can 1ave adverse and even -catastrophic
effects -on the-vehicle motion during reentry 1(Refs,. 3 and 4).

Because ,of the '&omplexity of 'the equations of motion When gyros copic

,coupling is 'involved, there 'are few ,analytical treatments -of 'roll resonance,

:and :much of what is known has 'iben obt;ained from computer solutions iof the

,general equations ,of motion. Such:studies -provide ,detailed information on

the motions :nd tra'jectories -of .specific vehicles ibut, 'unfortunately, do not

'lend themselves to,:identifying in .a ,scientific manner the -pertinent -parameters

that ,contribute to the roll resonance phenomena. The purpose ,of-the -present

:study is to identify analytically the 'most .important of these parameters

-.through -a :solution tof :a ;simple set tof -equations ,embodying the es s ential

features of .reentry'vehicle dynamics. The results .so ,btained 'provide a

:simple tool for predidting the occurrence and .severity -of reentry-veIicle roll

resonance .as a function ,of wehicle configuration, aerodynamic, -and trajectory

parameters.

The study treats, :separately., three regimes ,of Tesonance .identified in

Ref. '4, in the order in -which ,they mxiight be ,encountered by ;a typical' reentry

vehicle. First, the high .altitude .resonance "when the 'vehicle roil :rate first

'interacts with the critical -roll rate is ,exarmiined, ;and the conditions necessary

for roll locldn and ibreakout ,due to 'a single mass asymmetry are 'described.

Next, the steady subre sonant ,condition ,exhibited *by a vehicle with a single

mass :asymmetry when the .roll rate lies 'below the cr itical roll rate is

described -analytically, and the results ,are compared -with computer solutions

of the -three-degree-of-freedom equations of motion. Finally, :an approximate

-i -



method is presented for predicting the transient- roll spinup to resonance

and concomitant angle -of-attack divergence induced, by a compound asym-

metry, ,and these results are also compared With computer solutions of the

equations of motion.
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fl. COORDINATES AND EQUATIONS OF MOTION

It is convenient for the purpose of analysis to consider only three-

degree-of-freedom rotational- motion, since the roll resonance phenomenon

is basically gyroscopic in nature. There is, however, a normal force con-

tribution to pitch or yaw damping from lateral motion of the center of mass,

which can be accounted for in specifying the- aerodynamic moments, so that

the three moment equations effectively account for five-degree-of-freedom

motion for an axisymmetric vehicle.

The rotational motion is described in terms of the Euler angle' s, *,
0, as shown in Figure i, ,whichdescribe the position of the body-fixed axes
x, y, z relative to a set of inertial axes X, Y, Z. It is assumed that the inertial
frame of reference is moving with the vehicle center of mass along the velocity

vector, which coincides with the direction of the X-axis, and that the vehicle

axis is the body-fixed axis x or .. The angles *, 0, 0, which are rotations

about the axes X, x, , respectively, then represent precession about the

velocity vector, roll orientation relative to the wind, and total- angle of attack,

respectively. The mutually perpendicular- axes g, i ', which precess about

the velocity vector, are the pitch, yaw, and roll axes, respectively, where

the pitch plane is defined as the plane of total angle of -attack. These axes

differ from the usual body-fixed axes x, y, z in that the pitch axis t (the line

of nodes in the Eulerian system) is always perpendicular to the direction X

of the velocity vector, thereby defining the plane of the total angle of attack,

whereas the body-fixed axes y and z ,rOtate in this .system about the roll

axis (x or ) with angular rate l.

If the principal moments of inertia about the , T, axes are I, I, IV

respectively (pitch, yaw, roll), the angular velocities of the , 'T, axes

and the angular momentum about them are (Ref. 5)

-



(ROLL),X

(PITCH4)

Figure 1. Eulerks Angles for Three -Degree -of -Freedom
Rotational Motion
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h-I

si1I h I1'sini ID)

W =coso h;I(+I cose),

where w and ia are the pitch and yaw rates, respectively, and the roll rate

is ihe sum.

p : +coso o 2)

The moment equation of motion is

M =h + w Xh (3)

which,, from Eq. (i) with the definition, Eq. (2), has the components

M = A + xxp+ sin e - IZzsi' Ocose

M d= I sin;O) + 104 cos 0 -(IxPe (4)

M =I x dt

The moments UM, M, , 'M; are the aerodynamic pitch,, yaw, and roll

moments, respectively, acting on the vehicle.

m 1 • .-'5-



I. SINGLE MASS ASYMMETRY

A. MOMENT EQUATIONS

It will be assumed initially that the only asymmetry that gives rise to.

pitch rollcoupling is ,aodisplacement of the vehicle center of mass from the-

axis of symmetry (center of pressure)-ofthe vehicle and that this displace-

ment is small enough that the resulting cross products of inertia can be

ignored. Denoting this displacement c, as. shown in Figure 2, we can write

the aerodynamic moments in terms. of normal and axial force 'components for

an otherwise axially symmetric vehicle

Mg = CNqSI+ CAqSc cos [ + q N IC

M =__ N0 I
Cg = -Sc sin 0+ [C' - (5)

q 2 d
U = CCIqSd p

- ~sin + +

t The term CN I/md2 in the first two of Eqs. (5) is the usual normal force
damping 'termarom lateral motion of the vehicle center of mass. It can be
shown for an axisymmetric vehicle that the lateral motions are proportional
to pitch and yaw rotations about a poinit a distance l/m ahead of the center
of mass. Thus the three resulting moment equations account for lateral 4

translation of the vehicle and effectively describe five-degree-of-freedom
motion.

-7-iI
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where C and C are pitch and roll damping derivatives, respectively,
mq IP

and the angle * describing the roll orientation relative to the wind is zero

in the statically stable position when the center of pressure is on the leeward

side of the center of mass. Nqgative 0 produces a positive rol torque and

positive 0 produces a negative roll torque. It is shown in Section Ill-B that

roll resonance is a, condition during which 0 oscillates about a nonzero value

of 0 producing a net roll torque. The magnitude and' direction of this torque

are strongly influencedby the magnitude and time rate of change of the dynamic

pressure. The oscillation in 0 about a steady value or one slowly varying in

time is defined here as lunar motion in that a certain meridian, of the vehicle

is preferentially facing into the wind. From this definition, as is shown in

Section III-B, lunar motion is a necessary, condition for resonance.

Substituting Eqs. (5) in Eqs. (4) and dividing the first two equations

byI and the third by.Ix , we can write the equations of motion

-,e+ 6- Cos ° , + Rp sin-e-, 2sin 0 dos 0

6 sin -4 sin'O (I, sin e) + ICos - ip (6)

-dt "

where the coefficients are

CN qSI C~ qSc

x

C~qSc C qSd 2

6 _ _ - (7)
5=~~~ I- -Iu

x

qSd 2*I,( Ix
V.= m +

-9--7 3- 4



The sign convention is such that for a statically stable vehicle with positive
damping (Cm, C I < 0),, all of the coefficients will be positive.

q p
B. QUASI-STEADY SOLUTION FOR HIGH ALTITUDE

ROLL LOCKIN AND BREAKOUT

It will be assumed that the vehicle motion during reenfry, described
by [4(t), 0(t), 0 (t)], is of the form

W bt), 0(t),e (t) ] = lot, ) (] [ ), , +(t), 0+(t) ] (8)

where (W(t), (t), e(t)] represents a quasi-steady component that varies
relatively slowly with time (of the order of the dyn amic pressure) and

[4'+(t), I+(t), 0+(t)] represents an oscillation of higher frequency about the
quasi-steady values. It is of interestto examine solutions to the equations

of motion for the quasi-steady components only.

Making the small angle approximations sin 0 - 0, cos 0 = i, neglecting
pitch damping v, and ignoring the term 6 cos 0, which is quite small except

at angles of attack near statictrim, +we can-write the first ofEqs. (6)-in the

form

+ (X + P- - 0 . (9)

This equation describes a nonlinear oscillation in 0 about a nonzero quasi-
steady value-W, since 0, by definition, is always positive. The quasi-steady

values " and p corresponding toO are those satisfying the equation

, (10)

which makes 0 in Eq. (9) zero. Since, in general, V << i, the precession rate
4' from Eq. (i0) is approximately equal to kX /2, the pitch natural frequency
of the vehicle. From the definition, Eq. (7), X is proportional to the
i quare root of the dynamic pressure and is a relatively -slowly varying function

of time.

-10-
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Similarly, we can write the third of Eqs. (6), using the definition of p
from Eq. (2) with the assumption c6s ID 1 , .in the form

which, under certain conditions-when the rikht hand side is a, slowly varying

function of time, represents a nonlinear oscillation in & about the nonzero

quasi-steady value satisfying the equation

Fron Eqs.; (2) and (JO) with the-assumption of.smallO., the existence of a

quasi-steady Value such that dj/dt s 0 requires that

- ~ { 1. )/2

P= PC (13)

Eq. (13) is the lunar motion condition of roll resonance during which the

rol and precession rates are equal to-the- critical roll rate P, which is

slightly greater than the natural pitch frequency X of the vehicle. The

resonance condition can exist only when sin given by

sin j=- 'pc dt/ (14)

is real, i.e., when

Isin I :(15)

-1:-,
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Hence, the criterion, Eq. (15), with defined by Eq. (14), is a necessary

condition for, resonance for a vehicle having a single mass asymmetry. Re-

writing a in Eq. (14) in terms of PC using the definitions, Eqs. (13) and (7),

C

we can write sin -jin the Iorm

in.I !- dt)(1)

Since roll damping f is generally quite small, sin O+from Eq. (16) is approxi-

mately proportiona to the slope of the critical roll rate and is inversely

proportional to the square of the critical roll rate andangle of attack.

If the vehicle has an initial exoatmospheric roll rate, say p , then at

some point in the trajectory, say tP, the vehicle roll rate rnst intersect the

critical roll rate curve, as shown in Figure 3.

I /
I I /

/CRITICAL
/ROLL RATE

A /
s4 I /
II /

ROLL RATE, p

tiit

TIME (DECREASING ALTITUDE)

Figure 3. High Altitude Roll Resonance
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At this point the vehicle will lock into resonance' -provided that the' criterion,

Eq. (15), is satisfied and that the vehicle has the proper roll orientation with

respect to the wind; . e., the angle muit be such that the induced roll torque

has the same sense as the critical roll acceleration (e. g., if Pc is positive,

then 0 as defined in Figure Z must lbe negative to produce a positive roll torque).

Hence, the sin 0 criterion, Eq. (15), is a necessary, but not sufficient, con-

dition for resonance in that lockIn depends also on thephasing o1 as the roll

rate approaches critical. * However, if-lockin does occurs, then the vehicle

must break out of resonance when sih 0 is-no longer real, which will generally

occur at Some later points 'such as t2 in Figure 3, when k is large and 0 has

damped to a sufficiently small value The breakout point has particular

physical significance. Referring to Figure Z and the third of Eqs. '6, the roll

torque which produces the roll acceleration is proportional to the product

0 sin # . When 0 becomes sufficiently small, the maximum possible Toll

torque, corresponding to = 90 deg, is insufficient to increase p at an

average rate equal to the time rate of change of the critical roll rate, and

resonance is no longer possible.

In order to evaluate sin 0 from.Eq. (16), We require a knowledge of the

angle-of-attack convergence and the dynamic pressure history, which

determines the magnitude and slope of the critical roll rate. The dynamic

pressure is approximated assuming an exponential atmospiere with constant

path angle, the details of which. are discussed, in Appendix A. The angle-of-

attack convergence is obtained'from a quasi-steady solution 'of the equations

of -motion, which is summarized inAppendix B. Using these results, we can

now express the sin criterion, Eq. (16), in.terms of the vehicle and tra-

jectory parameters.

At t = t1 in Figure 3, where the.roll rate first+intersects the critical

curve, the roll rate is approximately equxal to the exoatmospheric value P.0
and the angle of attack has the approximate value given by Eq. (B-13),

Appendix B. Ignoring roll damping e and substituting sine i from

Eq. (B-i3) with the slope,dpc/dt from Eq. (A-16), Appendix A, in Eq. (16),

we obtain for sin ,

-43"
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111~1jgu(p.A e i2 x[(112)(b )p, (1 /2)bp0]

Isn7i LL c)g Pp sine

(17)

wlich, depending on whether or not is rea, i. e. Issin- I - 1,, is an

approximate criterion for determiing roll lockin. Assumning that locin

does occur, the breakout point can also be estimated using Eq. (16).

Equation (B-IS), Appendix B, describes the-angle-of-attack convergence

while the vehicle is in resonance. Substituting this expression for ' in

Eq. (16), using the values for p. and dpc /dt irom Appendix. -Ai as -before,

we obtain for the sin expression during lcIin

1 /4
u~ (I - 1,(*- exp{[(b/Z)(p -:pi) - (a/4),O]

(1:8)

where

_ z[ P '/Zei 1-"-C(P-7P:) 119,)
21 /2r 112 (9

ZaI2aH ,
a , siny

b HS q :-
--- sin "y-Y I

aa--( bo,)

11- C A  I_ .' sn -,guo H  -bp-1

14-



and D(x) is Dawson's integral defined by

D(x) = eX2f x et dt

for which tabular values are available (see, for example, Ref. 6). Breakout

must occur when fsin from Eq. (18) approaches unity, as shown in

Figure 3.

Figure 4 shows a )let of sin f fromEq. (18) for a typical reentry vehicle,

for different values of damping, measured from the point at which the roll rate,

first intersects the critical curve, P.o Pc., Figure 5 shows a comparison of

roll rates computed from a numerical integraton of Eqs. (6), with the,

extimated breakout points based on the sin criterion of Eq. (15), for the

values plotted in Figure 4. Also shown in Figure 5 is a comparison of the

computed angle-of-attack history with the quasi-steady approximation of

Appendix B for C -4. It is seen that for greater damping, breakout
n%

occurs earlier. This is a consequence -of the increased angle-of-attack

convergence, which causes jsin S to increase more rapidly to its limiting

value of unity. It is also seen that the greater the damping, the more accurately

the breakout point is predicted. This is a consequence of the assumption of

quasi-steady motion. It was showi that the vehicle breaks out of resonance

when the maximum roll moment corresponding to = 90 deg is insufficient

to accelerate the roll at the critical roll acceleration. Since the average

moment is computed based on the average momeint arm c sin 0 (Figure 2),

the moment will be overestimated, depending on the amplitude of the 0 oscil-

lation, since the average value of sin 0 at 0 = 90 deg is less than unity; i. e.,

sin 0 <sin 0. The lower the damping, the greater the amplitude of oscillation

will-be, which accounts for the discrepancies of Figure 5.

C. SUBRESONANT CONDITION.

Following breakout, which is accompanied by a perturbation in the

vehicle orientation and angular rates, and inthe absence of other asymmetries,

-is-
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1.0 _ _ _ _- - - _ _

0.8

0.6 ___

0.4

0.2 2

0180 160 140 120 -100 80 60 40

ALTITUDE, loft

Figure 4. Sin vs Altitude for Typical Reentry Vehicle
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-0APPROXIMATION C z6_
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20 COMPUTED 4 c"

10 1000-- 2

180 140 1OO 60 20
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Figure 5. CoMparison of Quasi-Steady Approximation and Computer
Calculation of Breakout Roll Rate and Angle -of -Attack ConVeigencd-

during High Altitude Resonane
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the roll rate has been observed to hecome almost constant, decreasing

slightly, and a condition of steady lunar motion exists at very smal angle

of attack. This is a stable subresonant condition that, owing to its steady

nature, can be described quite accurately by a quasi-steady solution -of the

equations of motion.'

Assuming that the angle of attack and angular rates remain constant,

i.e., 0 ,and O P i 0, and the small angle approximations are valid,

we can write the first'two of Eqs. (6) in the forii

6 co - (X+ i p- )W =O

6 sin -v 0 (zi)

Where the bars, as before, denote quasi-steadyvalues. Since 0 from

Eqs. (21) must also be slowly varying, which is the lunar motion condition

d/dt 0 O orrfi , Eqs. (Zi) may bewritten

-vp.*€

tan = 2 (2)

and'

6 Cos (23)
X[i-(P",lPc),] '

Where p* represents the almost constant value of p. after breakout. For p*

sufficiently removed from pc, as in Figure 5, tan u << i, cos i, and

we, can write Eq. (Z3) in the form

0 1 (,P*/c , (24)
trim

I



where 0 trim = 6/). ic the static or nonroUing trim angle of attack due to the

mass aSymzetry. Thus, it is seen that this trim is amplified by the factor

[i - (p~/pc)2 ] "L, which is characteristic of a near-resonant condition. It

is shown in Section IV-B that an aerodynamic trim in conjunction with the

mass asymmetry, which-can cause spinup into low altitude resonance, is
amplified by this- same factor during spinup.

The slight roll deceleration during the subresonant condition may be

estimated from the third of Eqs. (6) upon substitution of sin i s tan j from
Eq. (22) and from Eq. (23), which gives

6vp:,

S(•25)

This deceleration is found to be quite small except as p- PC.

Figure 6 shows a comparison of the quasi-steady angle of attack from

Eq. (24) with that obtained from a computer solution of the equations of

motion, for the case C. = -4 discussed previously. Also-shown in themnq
figure are the computed rofl rate and quasi-steady approximation ba d.on.

-the breakout roll rate from Figure 5 with a- numerical integration of

Eq. (25).

-19-
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Figure 6. Comparison of Quasi-Steady Approximation and Computer
Calculation of Angle-of-Attack and Roll Rate during Subresonance
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IV. COMPOUND ASYMMETRY

A. MOMENT EQUATIONS WITH AERODYNAMIC TRIM

It has been shown (Ref. 4) that if a relatively small aerodynamic trim

force develops at lower altitude that acts out of the plane of:the center-of-

mass asymmetry, a roll acceleration will be produced that can be sufficient

to spin the vehicle into low altitude resonance. This trim can be represented

by the normal force Ft oriented at an angle 0o with respect to the plane of

the center-of-mass asymmetry, as shown in Figure 7, and acting at a dis-

tance Lt aft (or fore)Yof the center of mass. Referring to Figure 2 and

defining a trim force coefficient Ct. = Ft/qS, we write the resulting pitch,

yaw, and roll moments in the form

Me CtqSLtcos (0 + 0)°

= CtqSLtsin (0 + (26)

M --Ctqc sin J

When these terms are added to the moments of Eq. (5), the equations of

motion, Eqs. (6), become

TCOS (+) X + 6cos - ,+p4 sin0 'sin o coso

T sin (,+ 'o -v'I sine =0 d- sin 0) + Ocos - pe (27)

-osino i e sin o - cp. dw

dt

-21-
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Figure 7. Orientation of Aerodynamic
Trim Force
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where T and a are defined by

CtqSLt  CtqSc

T I (28)X,

When 0o *90 deg, a relatively small normal trim force acting at a s'?fficient

distance Lt from the center of mass (at the fore or aft ends of the vehicle,

for example), will cause the roll to accelerate 'from its relatively constant

subresonant value to the-critical value, as shown in Figure 8. On reaching

the critical roll rate the vehicle will once again lock into resonance with a

subsequent divergence in angle of attack and increase in lateral loading. The

-same trim introduced at higher altitude prior to breakout from resonance

would cause the vehicie,,to remain locked into resonance.

SSPINSIUALTITUDE

"' SUBRESONOC
o ALTITUDE

• cRITICAL E

-

ROLL WAE

Figure ,8. Spinup to Low Altitude Resonance from
Compound Asymmetry
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The rofl and angle-of-attack behavior during spinup and resonance

can be obtained from an approximate quasi-steady solution of Eqs. (27),

similar to that used in treating the high-altitude resonance problem. It is

convenient to treat the spinup and resonance phases separately.

B. SPINUP TO RESONANCE

The mechanism for spinup to low altitude resonance with the presence

of a body-fixed trim-is similar to the roll acceleration during high altitude

resonance due to a single mass asymmetry. In both cases, the- roll torque

is the normal force from angle of attack acting on the center-of-mass

asymmetry as its moment arm. During high altitude resonance, the angle

of attack is the residual from-the e xoatmospheric reentry value, 'which has

not completely converged, whereas during spinup, the angle of attack is

induced by the aerodynamic trim. In order that the roll torque be sustained,

the vehicle must have a preferential rcdll orientation relative to the wind,

which is the lunar motion condition = 0.

Again, if we consider only the quasi-steady vehicle motion by neglecting

the angle-of-attack oscillations exemplified by 0 and 6, and make the small

angle approximations as before, the lunar motion condition requires that

4-', Pand we can write Eqs. (27) as

T cos(+)- + 6 cos = -2(1- .)9

Tsin (0 + o)- vp=p (29)

-a- sin -K sin 0 = p

We can solve these equations approximately for the quasi-steady Values p

and 0, for the case o = +90 deg, by neglecting the terms 6 and r, which are,

in general, small relative to other terms in the respective equationis. It is

shown in Section IV-C, by a comparison of the results so obtained s th a

numerical' integration of Eqs. (27), that this is a good assumption f( r typical

-24-



vehicle and trajectory parameters. Using the definition ofPc, Eq. (13),
we can then reduce Eqs. (29) to

T_. - /'c) 2 ]

'T cos = Op (30)

-,#c" sin p

By eliminatingT and " between these equations using the identity
.2- 2-sin 0 + cos = 1, we obtain the nonlinear differential equation for-p

.3

z P (pipe) ]] (31')

This is a cubic equation in p.,- with the second order term missing, which has

the exact solution

*(q K X I+2 /+3 )i./2[ (i+2 1'/2~ 1/

(32)

where

X= 2P- 2 (33)'

For typical vehicle and'trajectory parameters, X << i for Ip/pIcl 0. 9, and
Eq. (32) can be expanded in powers of X, which yields the simple result

KT
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This indicates, that the second -term in Eq. (31;) can be neglected for

13pI< 0. 9. :Since a nd the coefficients ov, -r n X aepoorinlt

the dynamic pressure, which is time dependent, Eq. '(34),can'bez~olved for

p by a~sinie numerical integration. :Substituting.Eq. (34)In Eqs. '130Q);,

we find -the corresponding angle -of-attack'behavior during spnp to be-

This is -the- same trim -amnpification factor derived in Section Ml-C for the

su'bresonance -condition -with-a single mass asymmetry.

C. LOW ALTITUDE AESONAN~CE AND ANGLE--OiF- -

.ATTACK DIVERGENCE

*As the roll rate :apprcadhes the critical -value Eqs. 1(-34);ana (35,) no

longer -apply, :and it -is essential to include -pItch-dampiing i' to 'o'btain-the -roll

behavior during resonance.- As with-the usual :resonanceT phenomenon, -the

angle -of attack exhibits a singtilarityizithe alisence of dampin *g 'as p-p~c'.

Therefore,, retaining -v, -we may write Eqs. '(2.9,)wiof~ '90 aeg in-the form

ZZO co '-T ink Z

'TCOS '0 (Vp+P)t3)

As p--.,pc the .first of q.36gieta0 6,T'C/)"/L) -kh

ingeera, i a ersmall'quantity fo rmmoments (C tL t),'of :sufficieiit

magnitude to spin the vehicle -into re sonance 'before impat Cnsqnty

sin -- and cos i ., which gives for 0 during resonance, from -the

second of Eqs. (36),

* (37)
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Noting that the nonrofling trim angle of attack 0' due to the trim r is T/X,

we find thatthe amplification of the nonrofling trim I/of during resonance is

2* (i - )pe vpc+ (38)
t P c + C

When P = 0, at peak dynamic pressure, this expression reduces to
c

- =(I )CNa I  I /Z
0 t W- 'nC (CI/mdZ) d 3

which, with the exception of I in place of I - I in the denominator, is the

identical expression derived in Ref. 4 using linear theory. The trim

amplification factor, Eq. (38), includes the depeiAdence of trim amplification

on the slope of the critical roll rate.

The foregoing results provide a simple means for predicting the roll

'acceleration and angle-of-attack divergence as a function of time (or altitude)

after the introduction of an aerodynamic trim. Because of the dependence

of the angle of attack during resonance on the slope of the critical roll rate

curve and on pitch damping (which is proportional to vehicle velocity), the

maximum angle of attack will depend on the altitude at which the veicle

spins into resonance. The approximate angle-of-attack behavior can be

construtcted from the results of Eqs. (35) and (37).

Figure 9 shows a typical- comparison of the quasi-steady approxima-

tion -with a computer calculation of the roll acceleration to resonance after

the introduction of a body-fixed aerodynamic trim 90 deg out of the plane of
the center-of-mass asymmetry. Figure 10 shows a similar comparison of

the, corresponding angle-of-attack divergence.

4
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Figure 9. Comparisonof Quasi-Steady Approximation with Computer
Calculation of Roll' Rate Transient after Introduction

of Aerodynamic Trim
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8 ~ QUASI-STEADY -APPROXIMATION
~~DURING RESONANCE, EQ. (37)

uj4

_ 4  COMPUTER RESULT
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S2 DURiNG SPINUP--
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TIME, sec

Figure 10. Comparison of Quasi-Steady Apprbximation with Computer
Solution of Angle-of-Attack Divergence after Introduction

of Aerodynamic Trim
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V. CONCLUSIONS

It ,has been demonstrated that reentry vehicle roll resonance can be

described by a solution of the moment equations of motion for the quasi-steady

or average values of the vehicle orientation and angular rates, without regard

for perturbations in the motion about these values. This results in a con-

siderable simplification of the equations of motion.

'The analysis has been applied to different regimes of reentry vehicle

roll resonance behavior, previously identified through computer solutions

of the general equations of motion for particular vehicles and trajectories.

The analytical results provide a simple tool for studying, parametrically,

reentry, vehicle motion for different vehicle configurations and trajectories,

and they serve to identify the important parameters and their relative

influences on roll resonance phenomena.

It should be possible to extend the analysis to include other aerodynamic

forces, 'such as pure roll torques or forces due to ablation, or mechanically

inducedl forces that might be desirable for control of the vehicle motion.

-
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~APPENDIXA~

CRITICAL ROLL RATE APPROXIMATION FOR
EXPONENTIA-L-ATMOSPHERE

2
Using the approach of Allen and Eggers, we can relate the critical

roll,,rate- and its derivatives to vehicle and trajectory parameters as follows.

It is assumed that atmospheric density p varies exponentially with altitude h

according to

-h/H (A-i)p = Pse

where p, and H are constants. Neglecting acceleration from gravity and

assuming a constant axial force coefficient CA# we can write the vehicle

deceleration from drag in the form

C. 2
du g

t- - = (A ;.)

where P is the ballistic coefficient defined by

p-
A(A-3)

For a constant path angle -y, .the vertical descent rate is

dh- - u sin 6 (A-4)

3-. H. Allen and A. J. Eggers, 3r., A Study of The Motion and Aerodynamic
Heating of Ballistic Missiles Entering the Earth's Atmosphere at High Super-
sonic Speeds, NACA Report No. 1381 (1 958).

A-i
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Differentiating Eq. (A-I) with respect to time and making use of Eq. (A-4),

we find that-the rate at which density increases during descent is

d_ pu sin y
dt (5

Eliminating t between Eqs. (A-Z) and (A-5), we find that the velocity change

with density, in terms of the trajectory parameter

a (A-6)

is

du ua (A-7)ZP= "- Y 0.-

which may be integrated to give

u = Ue(aZ)P (A-8)

Where u0 is-the reehtry-velocity.

The dynamic pressure as a function -of density is then

1 2 1 .2 -apq=pu =y puoe (A-9)

which has a maximum value

2
u

A-(

U JiL__ .
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at an altitude

h*,.= H lnp/p (A-i)

where the density is

= (A-i2)

and the velocity is

u* =O %ore •(A-t3)

The critical roll rate, p c definedby

PC (A-4)

may now be expressed as a function of atmospheric density and trajectory

parameters by substituting for q from Eq. (A-9), which gives,

0u

P IC=lt/ _.I I e)/Pe- (a/?-)p  (A5

The time rate of change of pc' which is also of interest, 'is found to be

CNS )1/2 Zpi/2- -ap

____=gu (p - p) (A-6)

A-3
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The atmospheric density is related to altitude through Eq. (A-i) and may

be expressed as a function of timethrough the expression

_ P 4o -(a /2 )p s1n
= - e s (A-i7)

Which may be integrated to give

t-t = H(a/))(p np) (a/2)Z~Ztt H ln--+ 0= + - . .PPO

o  u snv i • I i! 2 -

(A-48)

A-

I

!I

A-4
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APPENDIX B

ANGLE-OF-ATTACK CONVERGENCE DURING ROLL LOCKIN

We can estimate the angle-of-attack convergence through a quasi-

steady solution of the equations of motion,

' ~~~- X,+ s cos 0 - ,i = it+ Lp si - 2sm b coo e_

1) s ~-vi - ,,ins =V 'sin sin 0)'+ 4 cos o - 1p (B-i)

-O sin - d

using the exponential atmospheric density approximation discussed in

Appendix A. During resonance, the vehicle is in a state of lunar motion and,

for small 8, the quasi-steady or average values of p and are equal to the

critical roll rate; i.e.,

P PC "(B-2)

For a vehicle with a large pitch-tb-rof inertia ratio, 1i is small compared

with cos 0, and the term jp6 in the second of Eqs. (A-i) can be neglected

compared with BI cos 0. We can then write this equation, with the condition

of Eq. (B-Z), in the form

1/
sin'6sin v. C sn it PC m (B-3

B-i
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II

If we substitute the expression for sin from the third of Eqs. (B-4) into

Eq. (B-3), with the small 0- approximation and the conditions Eq. (B-2),

Eq. (B-3) becomes

d (Pcsin -) + vcsin2 g = -(EPC *dt / (B-4)

This equation can now be integrated for pc sin21 and has the familiar

solution.

pcsin 0 =exp[ [ t~ v(t') dt]j (Pcsin~l 6 jexp [ t"~;) dt

X(Pc +  d(B -5)- }dt B

where time t ti corresponds-to the point at which the vehicle first locks

into resonance, i.e., when the roll rate p intersects the critical curve p.

The angle of attack 0 at this point can be, estimated from the exoatmospheric

vehicle motion as follows.

Before reentry, in the absence of external moments and pitch accelera-

tion 0. the vehicle-will have some. exoatmospheric roll and precession-motions

p and at angle of attack 0o, which are gyroscopically coupled- according to

- o 
(B-6)0o Cos E)

0

Since 4 0 and' 0 will, in general, be unequal, the position of the windward

meridian 0 will rotate continuously about the vehicle, and a steady roll torque

cainot persist as it would in the case of lunar motion. However, there can be

a net roll torque depending on the phasing of . relative to angle-of-attack

oscillations 0. Nevertheless, in view of the small magnitude of the aerodynamic

i3-Z



forces -at these altitudes, it is assumed that P '- po constant until the roll

rate intersects the critical curve. If we neglect roll damping F,, the third of

Eqs. (B-i) requires that sin constant. Since, irom -considerations of

the quasi-steady solution of the pitc]h moment equ.ation discussed. in the body

of this report, the quasi-steady precession rate ' *ill be equal to the natural

pitch frequency )k / , which is very nearly P'C Eq. (B-'3) with sin = 0

describes the angle-of-attack' .-onvergence prior to high -altitude resonance.

Iitegrating this, equation from- 0 to t we o'btain

PC s0inZg'= oSinzeo exp (t) di , S t s t

(B-7)

We can evaluate the integrals of Eqs. (B-5) and (B-7) using the expo-

nential atmosphere approximations for q and u derived in Appendix A. Changing

the independent' variable from t to p, using -the relation

dp - PU° e-(a/z)Psiny (B-8)
dt H

derived in Appendix A, and neglecting roll damping in Eq. (B-5), we, find

that the integrals are

~t V.

fov(t ') bt' dp' b(p - p)(B9)
P0

6,tJ t 1(dpc'i P p(. P) d
'(exp j(t" dt~~ d t'Aj ectj.

44

(B-BQ)
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where

a sin -y

HS Md +4]>b 2 sit -y I M

a-b -a

C GaS1!1 /2  go

____ gu H ~(-iA=eA I bpi (B-it)

N a, x 2N2 sin Y

and D(x) is Dawson!s integral defined by

2fox t2.!

D(x) =-ex e dt , (B-i2)
0

for which tabular'values are available. 3 The angle-of-attack expressions,

Eqs-. (B-5) and (-7), can now be written in terms of these results. .0f

particular interest is the angle of attack when-the roll rate first intersects

the critical cuive at t = t1 . At this point the critical roll rate will equal

the exoatmospheric value p , which was assumedto remain constant in the

interval 0 < t5 t . Therefore, frorm Eq. (B-7) at t = ti, using the relation,

Eq. ,(6), weiobtain

sin@1  (cos 0o) sin exp[- (b/2)(Pi = po)] (B-13)
Co 0 0

See, for example, Handbook of Mathematical Functions with Formulas,
Graphs and Mathematical Tables, Applied'Mathematics'Series 55, National
Bureau of Standards (1964).
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For t > t i , noting from Eq. (B-i3) that

2(pcp 0 sion m0'o -b(pi.-po)
(PC = Cos e 0 B (B-14)

0

we can write Eq. '(B-5) in the form

- ) [B-= - 1 17 exp [I(a b+(b ] t>tj

0.

(B-;4 5)

which describes the angle-of-attack, convergence during resonance.

B-5

- .-. -~



UNCLASSIFIED
Security °Classification

DOCUMENT CONTROL DATA- R&D
(Security classitication of title, body of abatract and indexing annotation must be entered when the overall report is classified)

I. ORIGINATIN G ACTIVITY (Corporate author) 20. RCPORT SECURITY C LASSIFICATION

Aerospace Corporation Unclas sified

El Segundo, California '2b GROUP

3. nEPORT TITLE

A Simple Analysis of Reentry Vehicle Roll Resonance

4. DESCRIPTIVE NOTES (Type of report and Inclueive datae)

S. AUTHOR(S) (Lest name, ftret name. initial)

Platus, Daniel H.

6. REPORT DATE 7; TOTAL NO. OF-PAGES 7b. NO. OF REPS

January 'I967 47 6
$a. CONTRACT OR GRANT.NO. 94. ORIGINATOR-$ REPORT NUMMERS)

AF 04(695)-1001 TR-i001(2240-30)-10
b. PROJECT NO,

C. 9b. OTHER R yORT NO(S) (Any other numbem ta may be asiged

d. SSD- TR-67-25
10. A V A IL ABILITY/LIMITATION NOTICES

II. SUPPLEMENTARY NOTES '12. SPONSORING MILITARY ACTIVITYSpace Systems Division
Air Force System s Command
United States Air Force

13. ABSTRACT-

Reentry vehicle roll resonance due , to small mass and aerodynamic asym-
metries is described analytically by a quasi-steady solution of the three-
degree-of-freedom moment equations, of motion. The quasi-steady analysis
neglects oscillations in the vehicle orientation and angular rates about
average (quasi-steady) values of these parameters, which change slowly with
time relative to the oscillations. The study treats different regimes of
reentry vehicle roll resonance that have been 'identified through computer
solutions of the general equations of motion. These include high altitude roll
lockin and breakout due to a single, mass asymmetry, intermediate and low
altitude subresonance with a single asymmetry, and spiriup and lockin to low
altitude resonance from a compound asymmetry. For each of the resonance
regimes, analytical expressions ire obtained that describe the quasi-steady
vehicle motion, and the results are found to be ingood agreement with
computer solutions of the equations of.motion. The analytical approximations
provide a simple tool for predicting reentry vehicle dynamic behavior without
requiring costly and time consuming machine computations.

FORM 1473 UNCLASSIFED
"IrACSIMILI UNCLASSIFIED

Security Classification



UNCLASSIFIED
Security Classification

14. y o6
KEY WORDS

Roll Resonance
Reentry Vehicle Dynamics
Reentry Vehicle Stability
Reentry Vehicle Aerodynamics

b1

Abstract (Continued)

UNCLASSIFIED
Security Classification


